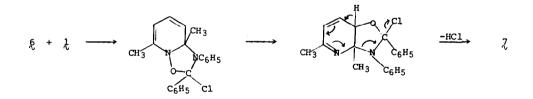
THE REACTION OF HETEROCYCLE N-OXIDES WITH BENZIMIDOYL CHLORIDE1

W. E. Parham and K. B. Sloan

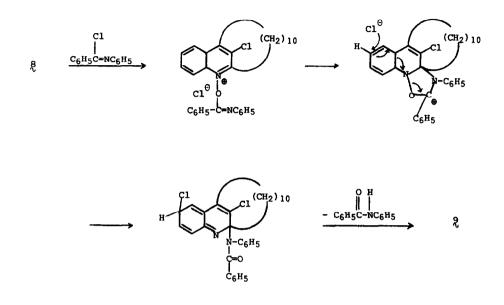

Department of Chemistry, University of Minnesota

Minneapolis, Minnesota 55455

(Received in USA 9 January 1971; received in UK for publication 27 April 1971)

We wish to report the reaction of a series of pyridine and quinoline N-oxides containing alkyl or ring methylene groups in the α -position with benzimidoyl chloride ($C_6H_5C-Cl=NC_6H_5$) (1). These reactions provide high yields of widely different products depending upon the structure of the heterocycle employed. The reactions were carried out in refluxing chloroform with a slight excess of benzimidoyl chloride, essentially as described by Abramovitch and Singer² for pyridine N-oxides with free α -positions. The results obtained are shown in Table I.

The reaction of quinoline N-oxide (2) with benzimidoyl chloride gave 2-anilinoquinoline (3), the product expected by analogy with the earlier work of Abramovitch and Singer.² However, with 2-alkyl quinoline 4 and pyridine 6 the products were the phenolic derivatives 5 and 7.³ Hydrolysis of 7 with hot methanolic potassium hydroxide gave 2,6-dimethyl-3-pyridinol (mp 211-213° from acetone, lit.⁴ mp 209-210°) together with some benzanilide; hydrolysis of 5 with hot sulfuric acidwater (50:50) gave in high yield 2,4-dimethyl-3-quinolinol (mp 204-205.5° from acetone). The benzanilimino ethers 5 and 7 are thought to form as shown in equation 1, by a process analogous to that described by Abramovitch and Rogers⁵ in their related studies with quinoline-N-oxide. (Equation 1)

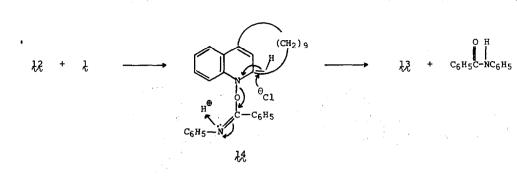


1947

a.b	TABLE I		······
Starting Material ^{a,b}	Product ^a	Yield	qm
		60.5% ^C	95-97 ^{0 i}
¢H3 € € 0	СH ₃ NC ₆ H ₅ ОСС-С-С ₆ H ₅ 5	72.5% ^d	125.5-127.5 [°]
	CH ₃ Z	59% ^e	129–131 [°]
	C1 0 0 2	80% ^f	77-79 ⁰
$ \begin{array}{c} $		69* ^g	159-160 ⁰
		168 ^h	109-110 ⁰

(a) All starting materials and products gave satisfactory analyses (± 0.30%). Nmr spectra were run in CDCl₃ at 60 MHz. The usual quinoline numbering system is used throughout the table to designate aromatic protons. See ref. 7 for the numbering of metacyclophanes. (b) Compounds 2 and 6 were obtained from Aldrich Chemical Co. Compounds 4 (mp 115-118), 8 (mp 125-127), 10 (mp 159-160°) and 12 (mp 119-121°) were prepared essentially according to the method of K. Biemann, G. Buchi and B. H. Walker, J. <u>Amer. Chem. Soc</u>., 72, 5558 (1952). (c) The initially formed N-benzoyl product was purposely hydrolyzed (KOH-methanol). (d) δ 2.63 (s, 3, 4-CH₃), δ 2.80 (s, 3, 2-CH₃). (e) δ 2.50 (s, 3, 6-CH₃), δ 2.58 (s, 3, 2-CH₃). (f) δ 7.83 (AB, 2, J_{AB} = 9 Hz, Δ_{VAB} = 26 Hz, 7- and 8-H), δ 7.93 (X, 1, J_{BX} = 2 Hz, 5-H). (g) δ 7.83 (AB, 2, J_{AB} = 2 Hz, Δ_{VAB} = 6 Hz, 5- and 7-H). (h) δ 5.25 (X, 1, J_{AX} + J_{BX} = 16 Hz, H_a - C-Cl), δ 7.61 (s, 1, 3-H). (i) Lit. mp 98°, <u>Chem. Abstr.</u>, 53, 2006lb (1959).

Formation of the chlorinated products⁶ 2 and $\prod_{i=1}^{n}$ may occur as shown in equation 2. The (Equation 2)



structure of 2 was established by its independent synthesis from <u>p</u>-chlorophenylhydrazine by a procedure similar to that previously reported for the parent metacyclophane.⁷ The structure of 2 was assigned from its nmr spectrum and by a logical extention of the scheme outlined in equation 2.

The nmr spectrum of the chlorinated product derived from $\frac{12}{12}$ showed the 3-<u>H</u> absorption intact and a benzylic methinyl proton as the X portion of an ABX pattern.⁸ Only structure $\frac{13}{12}$ fits these data.⁹

The different course of reaction of the metacyclophanes β and 10 as compared with 12 may be a consequence of the resistance of the benzylic carbon atom in β (and 10) to change to sp² hybridization. Inspection of models suggests that the removal of halogen from the 3-position of β to give 12 relieves the constraint of the methylene bridge.⁷ Consequently, formation of a benzylic sp² carbon atom as illustrated in equation 3 should be easier in 12 than in β or 10 and the formation of 13 may occur as shown in 14.¹⁰

REFERENCES

- (1) Supported by National Science Foundation, Grant GP-11918.
- (2) R. A. Abramovitch and G. M. Singer, J. Amer. Chem. Soc., 91, 5672 (1969).
- (3) The nmr spectrum of 5 shows the absence of the 3-<u>H</u> absorption at δ 6.93 7.02 observed for the free bases corresponding to 4 and 12. The spectrum of 7 shows a complex multiplet at δ 7.8 7.5 for the two remaining aromatic protons which would not be expected if substitution had occurred at C-4. Both 5 and 7 show v_{C=N} at 1670 cm⁻¹ and base absorption at <u>m/e</u> 180 (C₆H₅<u>N</u>=CC₆H₅) in their mass spectra.
- (4) N. Naito, T. Yoshikawa, F. Ishikawa, S. Isoda, Y. Omura and I. Takamura, <u>Chem. Pharm. Bull.</u>
 (Tokyo), 13, 869 (1965); <u>Chem. Abstr.</u>, 63, 11488 (1965).
- (5) See R. A. Abramovitch and R. B. Rogers (in press, this journal). We wish to thank Professor Abramovitch for exchange of information prior to publication.
- (6) Benzanilide was also isolated in good yield.
- (7) Stabilization of the benzylic sp^2 carbon atom is unlikely since the steric bulk of the 3-Cl group prevents the alkyl substituted sp^2 carbon atom from becoming coplanar and being conjugated with the π system of the heterocycle. Cf. W. E. Parham, R. W. Davenport and J. B. Biasotti, <u>J. Org. Chem.</u>, <u>35</u>, 3775 (1970).
- (8) A number of other metacyclophanes substituted in the benzylic position exhibit similar spectra with approximately the same value for \underline{J}_{AX} + \underline{J}_{BX} (14-16 Hz). See ref. 7.
- (9) An alternate structure with the chlorine atom at the other benzylic carbon atom is not rigorously excluded by these data.
- (10) cf. V. J. Traynelis in "Mechanisms of Molecular Migrations," Vol. 2, B.S. Thyagarajan, Ed., Interscience Publishers, New York, N. Y., 1969 for related mechanisms.